Omnitron Activates at L’ATTITUDE 2023

Eric Aguilar at Omnitron Sensors' activation at L'ATTTITUDE 2023
Eric Aguilar experiences LiDAR in a VR environment

The vibe at L’ATTITUDE 2023—the largest business event in the country exploring the ways in which the U.S. Latinx cohort is driving the growth of The New Mainstream Economy—was nothing short of electric. More than 8,000 executives, business leaders and entrepreneurs gathered in Miami to interact with the four L’ATTITUDE partners, Sol Trujillo, Gary Acosta, Emilio Estefan, and Oscar Munoz, each of whom has blazed a path in his chosen profession. Attendees also tuned into a world-class line-up of C-suite speakers from firms such as Accenture, Wells Fargo, Bank of America, NBCUniversal News Group, JP Morgan Chase, United Airlines, and too many others to list here.

L’ATTITUDE 2023 was especially memorable for Omnitron Sensors, which was one of two L’ATTITUDE Ventures’ portfolio companies selected for a booth activation during the event. Omnitron Sensors CEO Eric Aguilar and the Omnitron team showcased the company’s LiDAR sensor technology through a VR demo designed to show event attendees how LiDAR augments environments to enhance the accuracy and safety of autonomous robotic systems.

Eric’s story as a Latino entrepreneur who co-founded a chip company also caught the attention of CNBC’s Squawk Box. Catch his interview here.

One day in the not-too-distant future, Omnitron’s LiDAR sensors will present a 3D environment that’s safer and more affordable for autonomous navigation/operation in cars and delivery drones, in VR gear, in industrial robots, and in other complex electronic devices that need superior machine vision.

Curious how Omnitron Sensors is reinventing LiDAR sensors? Contact us today.

Fix the Optical Subsystem, Fix LiDAR

ADAS & Autonomous Vehicle Technology Expo

Fix the Optical Subsystem, Fix LiDAR

While extremely promising, today’s optical subsystems for LiDAR remain fragile, large, expensive to build and maintain, overly susceptible to environmental conditions, and inconsistent in their performance. Fortunately, we can reach the full potential of LiDAR by fixing the optical subsystems on which LiDAR systems rely.

With experience that spans core sensor development and systems integration at companies such as Tesla, Argo AI, and Google X Project Wing, Omnitron Sensors Co-founder & CEO Eric Aguilar learned first-hand what automotive integrators need for affordable, reliable, long-range LiDAR systems. Join Eric for his presentation, Fix the Optical Subsystem, Fix LiDAR, on September 21, 2023 at 1:45 p.m. at the 2023 ADAS & Autonomous Vehicle Technology Expo & Conference (September 20-21 in Santa Clara, California).

During his presentation, Eric will review the pros and cons of today’s optical subsystems and will introduce a new, cost-effective MEMS scanning mirror for LiDAR that ticks all the boxes for automotive integrators and manufacturers.

You’ll learn more about:

• The role that the optical subsystem in LiDAR plays in ADAS and autonomous systems
• Automotive industry requirements for optical subsystems for LiDAR
• The top 3 issues with existing optical subsystems for LiDAR—Voice Coil, spinning polygon, Galvo
• The great potential—and challenges—of MEMS mirrors
• The problem-solver: first mass-produced low-cost, rugged, reliable MEMS scanning mirror

Hear from Eric and 70+ other expert speakers exploring key topics around the development and testing of safe autonomous driving and ADAS technologies, including software, AI and deep learning, sensor fusion, virtual environments, verification and validation of autonomous systems, testing and development tools and technologies, real-world word testing and deployment, and standards and regulations.

Get your free expo pass or register for the conference today. Or, if you’d like to learn more about Omnitron Sensors but aren’t able to attend, please contact us.

Transforming Optical Scanning through MEMS for ADAS, Autonomous Navigation, VR/AR/MR

The optical scanner is at the heart of the perception systems we’re increasingly using in cars, in drones, and in virtual reality (VR)/augmented reality (AR)/mixed-reality (MR) headsets. In automotive, we may see a combination of cameras, LiDAR and radar used in advanced driver assistance systems (ADAS), such as automatic braking, lane-departure warnings, and collision avoidance. That’s typically the case for autonomous navigation in cars and drones as well. The optical systems in VR/AR/MR headsets feature a display—such as an OLED or LED, and cameras; and one day soon LiDAR may augment or replace those cameras. Whatever their underlying scanning technology, perception systems require micro-optical components that are accurate, reliable, affordable and available in mass-production volumes.

With so many different types of micro-optical components available for perception systems, how can designers choose the best components for their specific applications? As with any important engineering decision, you have to balance what’s most important to your customer.

Chances are, you’re looking for a compelling set of features at an affordable price point.

If you’re designing perception systems for ADAS, autonomous navigation or AR/VR/MR, it’s time to start looking at the next generation of LiDAR sensor. Because the LiDAR of old—fragile, large, expensive, susceptible to environmental conditions, and difficult to maintain—is a thing of the past. Leveraging a new topology for MEMS, Omnitron Sensors is introducing a small, low-cost, rugged and reliable step-scanning sensor for LiDAR. Omnitron’s MEMS step-scanning sensor makes a world of a difference in autonomous navigation—interpreting the real-world physical environment that a car perceives in 3D, not 2D.

And that’s just scanning the surface of what Omnitron Sensors can do. Its next-gen LiDAR sensor perceives the environment accurately in all lighting and weather conditions. It can decipher between stationary and moving objects, is immune to high-vibration and temperature variation, and it’s affordable in mass-production quantities.

Learn more about Omnitron’s MEMS step-scanning sensor for LiDAR at Micro Optics 2023, a virtual conference that takes place August 1-3, 2023.

Omnitron Sensors Co-founder & CEO Eric Aguilar will present Transforming Optical Scanning: MEMS Topology for Low-Cost, Small, and High-Performance Scanners,” at 12:15 p.m. EDT on August 3, 2023.

There’s still time to register. Or, if you’re not able to attend Micro Optics 2023, please email Omnitron Sensors today.

Innovation in MEMS—and Elsewhere—Starts with Market Disruption

When Thomas A. Edison invented the phonograph in 1877, he first envisioned its use for letter writing and other forms of dictation, but he didn’t foresee that his invention would one day transform the way that people listen to music, expanding that experience from live performance only to recorded music in the comfort of one’s own home.

Let’s go one step further. Read this excerpt from the December 22, 1877 issue of Scientific American with a modern eye, and you might think that Edison’s work portended the invention of AI-enabled chatbots that mimic human conversation: “Mr. Thomas A. Edison recently came into this office, placed a little machine on our desk, turned a crank, and the machine inquired as to our health, asked how we liked the phonograph, informed us that it was very well, and bid us a cordial good night.”

On a literal level, we can’t draw a linear connection, but on a conceptual level, Edison was onto something. His work—as well as that of other pioneers who followed him closely, including Alexander Graham Bell—laid the foundation for future voice and acoustic applications, including smart speakers, cellular phones, and digital audio books.

Innovation in MEMS has progressed similarly. It has not always moved in a linear fashion, but there have been flashes of brilliance along the way. The first MEMS accelerometers in air bag crash sensors, commercialized by Analog Devices in the mid- to late 1990s, proved that MEMS devices can be manufactured in high volume and used in environments with high vibration and wide temperature variation. The Nasiri-Fabrication platform, which InvenSense used to manufacture the first high-volume MEMS gyros for consumer applications in the early 2000s, was another major leap in innovation.

Here we are in 2023, with billions of MEMS sensors now deployed in thousands of different electronic applications, and innovation has stagnated. Our industry still contends with the limitations of non-standard processes and packaging approaches, long design-to-delivery life cycles, varying degrees of high cost, and issues with reliability and accuracy. Despite this, MEMS technology has unlimited upside potential. All we need to do is fix it at a foundational level.

That’s what we’re doing at Omnitron Sensors. We’re disrupting the market with a new topology for MEMS that simplifies fabrication to improve capacitance, increase ruggedness, improve yield, speed design-to-manufacture, and reduce cost. And it’s through our new topology for MEMS that we’re able to build better MEMS devices that span markets and applications, from the first MEMS step-scanning mirrors for LiDAR to better IMUs, better actuators, and better pumps.

Interested in learning more?

Omnitron Co-founder & CEO Eric Aguilar will present Omnitron’s new topology for MEMS at MEMS World Summit Europe, June 13-14, 2023 in Porto, Portugal. There’s still time to register for this annual event, which attracts industry leaders and decision-makers from the global MEMS and sensors industry.

Or, if you’re not able to attend MEMS World Summit Europe, please email Omnitron Sensors today.