Omnitron Sensors, the MEMS Technology Change-Maker

Shipping by the hundreds of millions, MEMS devices are integral to our daily lives. Given the miniature size, low power and intelligent sensing capabilities of MEMS, it’s no surprise that microelectromechanical systems (MEMS) devices are found in every imaginable electronic product, from smartphones and cars to medical devices, environmental sensors and security systems. But there’s one pain point that has limited even greater growth of MEMS: Traditional MEMS manufacturing is inefficient, complex and costly.

Omnitron Sensors is changing the nature of MEMS manufacturing. Guided by a trio of industry experts, Omnitron is offering the first major manufacturing-level improvement to MEMS in over a decade. Omnitron calls it “a new topology for MEMS.”

Challenging established standards and assumptions around MEMS manufacturing processes, Omnitron’s new topology for MEMS simplifies system assembly and packaging, enhancing device performance and accelerating production for cost-sensitive, high-volume markets.

With such a new approach to MEMS manufacturing, how did Omnitron Sensors come to be?

CEO & Co-founder Eric Aguilar, CTO & Co-founder Trent Huang and VP of Business Development Curtis Ray found one another in the field of advanced sensors. Eric and Trent met at Lumedyne Technologies, where they played leadership roles and helped to prepare the company for its acquisition by Google for $85M. Post-acquisition, they both stayed on with Google and ended up working on different projects — Eric as lead in avionics on Google’s Project Wing (later X, the moonshot factory) and Trent as lead technologist in quantum computing and in MEMS hardware. The two tech visionaries kept in touch as their careers progressed. And in February 2019, they co-founded Omnitron Sensors to realize the core IP that would change MEMS manufacturing as we know it.

Meanwhile, Curtis had been working in the industry since 1984, even before it was called MEMS. As both a thought leader in MEMS and a serial entrepreneur, Curtis found himself intrigued when an investor approached him to conduct due diligence on Omnitron Sensors. Impressed by Omnitron’s realization of a large step-scanning MEMS mirror that could be fabricated in volume by a commercial MEMS foundry— and fully aware of the transformative potential of the MEMS topology on which the mirror was based — Curtis joined the company to lead business development.

We interviewed Eric, Trent and Curtis about innovation in the MEMS industry and gathered their insights on Omnitron’s potential to transform MEMS manufacturing.

Question 1: Can you describe what Omnitron Sensors does at the 50,000-foot level?

Curtis: Omnitron is advancing the field of MEMS by combining bulk micromachining, surface micromachining, and SOI (Silicon on Insulator) techniques. Bulk micromachining involves creating grooves and other structures, often using DRIE (Deep Reactive Ion Etching). Surface micromachining uses layers of polysilicon and oxides to build thin, planar structures. While traditionally used for specific applications such as safety mechanisms in nuclear bombs, surface micromachining isn’t affected by electromagnetic pulses. At Omnitron we’re pioneering a hybrid approach that combines SOI and surface micromachining, creating a top layer that can move in and out of structures. This allows for versatile three-dimensional polysilicon structures for sensors and actuators.

Eric: As a result of this core IP for MEMS manufacturing processes, we’ve developed the first MEMS mirror that aligns to a LiDAR’s sub-micron-level tolerances without constant recalibration — and which is priced for cars instead of billion-dollar satellites. This has attracted the attention of Tier 1 automotive suppliers. With the capital in hand to manufacture our MEMS mirror and with Silex as our proven high-volume foundry partner, we’ve cleared the way to satisfy future demand from LiDAR suppliers.

That’s not to say we’re limiting ourselves to LiDAR. We’ve demonstrated broad applicability for our topology in diverse markets, including augmented reality, AI workflow, image stabilization, and laser spectrometry for toxic gas detection.

Question 2: What are the most exciting developments in MEMS that you’ve seen in the last decade?

Curtis: Until Omnitron, I haven’t seen much new for over 10 years. Omnitron’s actuator and capacitive sensors operate differently: instead of just using plates, we create deep trenches. The plates move in and out of the plane, increasing capacitance as they move farther out. Noise is a common issue in sensors, but our design minimizes stray capacitance. To meet our technical requirements, we flipped both the actuator and sensor. The mirror is actuated within a closed-loop system, consisting of a reflective silicon disk with actuators and sensors between the base and the mirror. The actuator moves the mirror, and the sensor precisely measures the movement. This same sensor and actuator setup can also be applied to microfluidics.

Trent: The implementation of the piezoelectric (PZT) process is a significant advancement because it opens new ways to activate devices and systems. Yet it’s only been in the past decade that PZT has been qualified as a MEMS technique. The main challenge now lies in qualifying PZT for the rigors of automotive.

Question 3: What are your hopes for the Omnitron Sensors?

Trent: I hope our technology revitalizes the MEMS industry and enhances R&D in education as well. The potential of sensor integration in our world is still largely untapped, far beyond what we currently see. As AI becomes more prevalent, it’s clear that we need reliable hardware to integrate sensors into our daily lives. The Internet of Things (IoT) has been a promising concept, but producing affordable and reliable sensors has been challenging. Small sensors often drift, but our technology aims to solve these problems and make widespread sensor use a reality.

Eric: At Omnitron Sensors, we aim to revolutionize robotics by advancing sensors that enable real-world operation. By disrupting the MEMS market with our new topology, we are not only driving innovation but also fostering an environment where major steps can be taken in chip technology. Our goal is to unlock future innovations in fields that are beyond current imagination

Meet our Leadership Team

Eric Aguilar, co-founder and CEO, is an award-winning entrepreneur and visionary leader in the field of advanced sensor systems for complex systems such as robotics and autonomous platforms. His expertise includes leading teams at renowned companies such as Tesla, where he managed a crew of 300 engineers on the firmware for Model 3, and at X (the moonshot factory), where he spearheaded the development of Google Project Wing, an autonomous drone delivery service.

Eric’s leadership roles at Argo AI and at Lumedyne Technologies (acquired by Google) underscore his impact on the industry. Earlier in his career, Eric did pioneering work in building sensors for drones at US Navy Research Labs.

With a BS in Electrical Engineering from California State Polytechnic University and advanced studies at the University of Southern California, Eric continues to shape the future of sensor technology.

Dr. Trent Huang, co-founder and CTO, brings extensive experience in optical, microwave, micro-/nano-fluidic, and biological MEMS sensors, actuators, and microfabrication to Omnitron Sensors, where he leads the company’s technology teams to drive organizational growth.

Trent holds numerous patents, and his expertise in theories, applications and productization of micro-/nano-systems has consistently delivered transformative solutions that allow Omnitron to break through the barriers of MEMS manufacturing. With a strong track record of leveraging emerging technologies to solve complex business challenges, he thrives in dynamic environments where creativity and agility are paramount.

Prior to Omnitron, Trent led teams of scientists and engineers at Google in the areas of quantum computing, and in MEMS hardware and system technologies for Android products. Trent has held leadership positions in MEMS engineering at Lumedyne Technologies (which Google acquired during his tenure) and at Tessera Technologies. His professional experience also spans bio-compatible MEMS, molecular nanotechnology, and optical technologies.

Trent earned a BS in Physics at the University of Science & Technology of China, an MA in Physics at the University of Virginia, and a PhD in Electrical Engineering from Cornell University.

Curtis Ray, head of business development, cultivates relationships with employees, customers and advisors who are driven to change the world through life-enhancing technology.

Considered one of the early thought leaders in MEMS technology, Curtis’s expansive career includes developing and selling a MEMS foundry, and launching MEMS sensors, micro-opto-electromechanical (MOEMS) mirrors, and multiwavelength optical transceivers to commercial markets.

With 31 patents, and four companies built and sold under his belt, Curtis possesses that unique combination of technical excellence and business acumen that are vital to a startup’s success. Curtis has dedicated a significant part of his career to guiding aspiring engineers and entrepreneurs, evident in his long-term involvement with First Robotics.

Curtis earned a BSME from Purdue University and an MBA from Haas School of Business at University of California, Berkeley.

Together, Eric, Trent and Curtis are at the forefront of sensor innovation, each bringing unique expertise and vision to Omnitron Sensors. Their collective efforts are unlocking the full potential of MEMS to add intelligence to the electronic products in our lives.

This MEMS Scanning Mirror Could Solve LiDAR’s Expensive Autonomous Vehicle Challenges

Tech Briefs Author Woodrow Bellamy interviewed Omnitron Sensors Co-founder & CEO Eric Aguilar about the evolution of LiDAR sensors in autonomous navigation systems. Eric reveals how long-standing inadequacies in LiDAR sensors–from fragility and performance issues to high cost–have prevented LiDAR sensors from meeting the rigorous demands of the automotive industry. Until now. Omnitron’s new LiDAR sensor solves the problems that have limited LiDAR. Read the article.

Omnitron Activates at L’ATTITUDE 2023

Eric Aguilar at Omnitron Sensors' activation at L'ATTTITUDE 2023
Eric Aguilar experiences LiDAR in a VR environment

The vibe at L’ATTITUDE 2023—the largest business event in the country exploring the ways in which the U.S. Latinx cohort is driving the growth of The New Mainstream Economy—was nothing short of electric. More than 8,000 executives, business leaders and entrepreneurs gathered in Miami to interact with the four L’ATTITUDE partners, Sol Trujillo, Gary Acosta, Emilio Estefan, and Oscar Munoz, each of whom has blazed a path in his chosen profession. Attendees also tuned into a world-class line-up of C-suite speakers from firms such as Accenture, Wells Fargo, Bank of America, NBCUniversal News Group, JP Morgan Chase, United Airlines, and too many others to list here.

L’ATTITUDE 2023 was especially memorable for Omnitron Sensors, which was one of two L’ATTITUDE Ventures’ portfolio companies selected for a booth activation during the event. Omnitron Sensors CEO Eric Aguilar and the Omnitron team showcased the company’s LiDAR sensor technology through a VR demo designed to show event attendees how LiDAR augments environments to enhance the accuracy and safety of autonomous robotic systems.

Eric’s story as a Latino entrepreneur who co-founded a chip company also caught the attention of CNBC’s Squawk Box. Catch his interview here.

One day in the not-too-distant future, Omnitron’s LiDAR sensors will present a 3D environment that’s safer and more affordable for autonomous navigation/operation in cars and delivery drones, in VR gear, in industrial robots, and in other complex electronic devices that need superior machine vision.

Curious how Omnitron Sensors is reinventing LiDAR sensors? Contact us today.

Fix the Optical Subsystem, Fix LiDAR

ADAS & Autonomous Vehicle Technology Expo

Fix the Optical Subsystem, Fix LiDAR

While extremely promising, today’s optical subsystems for LiDAR remain fragile, large, expensive to build and maintain, overly susceptible to environmental conditions, and inconsistent in their performance. Fortunately, we can reach the full potential of LiDAR by fixing the optical subsystems on which LiDAR systems rely.

With experience that spans core sensor development and systems integration at companies such as Tesla, Argo AI, and Google X Project Wing, Omnitron Sensors Co-founder & CEO Eric Aguilar learned first-hand what automotive integrators need for affordable, reliable, long-range LiDAR systems. Join Eric for his presentation, Fix the Optical Subsystem, Fix LiDAR, on September 21, 2023 at 1:45 p.m. at the 2023 ADAS & Autonomous Vehicle Technology Expo & Conference (September 20-21 in Santa Clara, California).

During his presentation, Eric will review the pros and cons of today’s optical subsystems and will introduce a new, cost-effective MEMS scanning mirror for LiDAR that ticks all the boxes for automotive integrators and manufacturers.

You’ll learn more about:

• The role that the optical subsystem in LiDAR plays in ADAS and autonomous systems
• Automotive industry requirements for optical subsystems for LiDAR
• The top 3 issues with existing optical subsystems for LiDAR—Voice Coil, spinning polygon, Galvo
• The great potential—and challenges—of MEMS mirrors
• The problem-solver: first mass-produced low-cost, rugged, reliable MEMS scanning mirror

Hear from Eric and 70+ other expert speakers exploring key topics around the development and testing of safe autonomous driving and ADAS technologies, including software, AI and deep learning, sensor fusion, virtual environments, verification and validation of autonomous systems, testing and development tools and technologies, real-world word testing and deployment, and standards and regulations.

Get your free expo pass or register for the conference today. Or, if you’d like to learn more about Omnitron Sensors but aren’t able to attend, please contact us.